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Abstract 

A new phase Eu~/3Zr2(PO4) 3 of Nasicon type structure was prepared via a sol-gel route. The crystallization process 
was investigated using Eu 3+ as a structural probe. The decomposition of this phase at 900 °C leads to a complex 
ceramic exhibiting a very low thermal expansion coefficient between room temperature and 1340°C: 
(~) ~ l × 10 7 o C-1. Chemical intercalation of lithium gives rise to a new EuZ-+-rich phosphate Li, Eu~/3Zr2(PO4)3 
(x ~ 0.33). 

1. Introduction 

Nasicon type phosphates with general formula 
M,,M2(PO4)3 have been extensively studied with re- 
spect to their exchange, catalytic and luminescent prop- 
erties [1-3] as well as possible applications in various 
fields of material science as solid electrolytes [4], low 
thermal expansion ceramics [5-7] and matrices for 
waste storage [8]. In these phosphates M is usually a 
monovalent cation: alkali, copper, silver or a divalent 
cation (Ca 2+, Sr2+). Two studies on the introduction of 
a rare earth in this structure type have been published 
[9, 10]. The present paper reports on a preliminary 
investigation of the new phosphate Eul/3Zr2(PO4) 3 ob- 
tained via a sol-gel route. The crystallization process 
was investigated by X-ray diffraction (XRD) as well as 
structural probing. The compound was also character- 
ized by its dilatometric and intercalation properties. 

2. Elaboration 

The starting compounds, Eu203 and ZrOC12, 8H20 
were dissolved separately in 2 N HNO3. The solutions 
were then mixed in stoichiometric proportions. The 
addition of a solution of NH4H2PO4 under constant 
stirring produced a colourless gel. The gel and floating 
solution mixture were maintained for 24 h at 75 °C and 
then progressively heated up to 400 °C to allow both 
ammonia and nitrous vapours to evolve. The white 
powder obtained was amorphous. Crystallization be- 
gins at 750 °C and is complete at 800 °C after long 
annealing. Above 900 °C Eul/3Zr2(PO4) 3 starts to de- 
compose. Ultimately, at 1300 °C, the following phases 

can be detected by XRD: ZrP207, EuPO4, Zr2P209 
and ZrO 2 . 

3. Gel-crystal transition and structural investigation 

The structural evolution during gel-crystal transition 
was continuously observed at various temperatures by 
recording the 5D0----+VF J ( J = 0 ,  1,2) emission of 
Eu 3+. The emission spectrum of the get dried at 75 °C 
and more specifically the 5D o ----, 7F o transition energy 
are identical with those of Eu 3+ in nitric solution, 
indicating similar solvation of this ion in both media 
(Fig. 1). 

At higher temperatures the Eu 3+ emission changes 
strongly, Broadening of all the emission bands is ob- 
served as well as an increase in the intensity ratio: 

I(5Do , 7F2) 
R =  

I(SD o ~ 7FI) 

For samples dried at 200 °C, R = 2.6 and at 600 °C, 
R = 4.2. These evolutions involve a continuum of low 
symmetrical sites for Eu 3+ (Fig. 2). 

The crystallization at 800 °C corresponds to a nar- 
rowing of all the SD o ,7Fj lines (Fig. 2). A unique 
5Do ,5F o line is observed at 17355 cm-~; with regard 
to the nephelauxetic scale [11] this rather high value is 
consistent with a weak crystal field acting at the rare 
earth site, i.e. with relatively large ( E u - O )  distances 
compared with the value deduced from the ionic radii 
[12]. 

The framework of the structure is only produced at 
the end of the crystallization process and Eu 3+ ions are 
located in a unique non-centrosymmetrical site. 
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Fig. 1. Comparison of Eu 3+ emission spectra in the investigated 
gel and in the nitric solution. 
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TABLE 1. Comparison between the cell parameters of Nasicon- 
type phosphates 

a(A) c(/~) 

NaZr2(PO4)3 [ 13] 8.804 22.758 
Ca0.sZr2(PO4)3 [8] 8.800 22.60 
EUl/3 Zr2(PO4) 3 8.767 22.91 

The XRD pattern of the crystallized sample can 
be indexed assuming a hexagonal cell: ah = 8.767 + 
0.005 A, Ch = 22.91 + 0.03/~ (dexp = 3.34, dx = 3.293). 
All the observed lines, except for two at low angles, are 
compatible with the R 3 c  space group: 7.56 ,~-5.70/~. 

These results can be analysed within the scope of the 
crystallographic data of zirconium Nasicon-type phos- 
phates containing ions with size comparable with that 
of  Eu 3+ (0.947 A [12]). 

The spectral distribution of the 5D o ,7Fj  lines is 
compatible with the location of Eu 3+ in the site usually 
labelled Ml,  an elongated antiprism sharing common 
faces with two ZrO 6 octahedra in a direction parallel to 
the c axis. 

Table 1 compares the parameters of EUl~3Zr2(PO4)3 
with those of NaZr2(PO4) 3 (RNa+ = 1.02A [12]) and 
Ca0.sZr2(PO4) 3 (Rca2+ = 1.00 ,~ [12]). 

The rules governing the variation of the Nasicon type 
phosphate parameters have been reported previously 
[14]. The value of the c parameter results from the 
competition between the coulombic attraction of the 
cation in (Ml )  with the surrounding oxygen atoms and 
the O2-O 2- repulsion occurring when M t is empty. 
Clearly the first factor prevails with substitution of 
Ca 2+ for Na ÷. In contrast, the high c value of the 
europium phosphate is the consequence of the high 
vacancy concentration in the M1 sites. 

4. Preliminary investigation of the dilatometric and 
intercalation properties 
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Fig. 2. Eu 3+ emission spectra for the gel, the gel heated at 200 °C 
and the crystalline phase Eu~/3Zr2(PO4)3. 

Dilatometric measurements were performed between 
room temperature and 1347 °C using a Netzch 402 ED3 
differential dilatometer. The results are summarized in 
Figs. 3 and 4. 

The thermal expansion of Eul/3Zr2(PO4) 3 is slightly 
positive ( A L / L  ~ 1.5 × 10 -3) until the beginning of de- 
composition at about 900 °C which induces a marked 
shrinkage (Fig. 3). The resulting composite exhibits a 
remarkably weak thermal expansion coefficient 
((c<)-~ 1 x 10 .7 °C - l )  between room temperature and 
1340 °C (Fig. 4). A detailed study of this new complex 
ceramic is presently in progress. 
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Fig. 3, Thermal expansion of Eut/~Zr2(PO4)~ with increasing and 
decreasing temperature. 
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Fig. 4. Thermal expansion of the complex ceramic with increas- 
ing and decreasing temperature. 

l(u a.) 

EXCITATION 

3o0 slo 31o &o Z&,/ 

I(u.a.) 

EMISSION 

400 450 500 550 600 /~ (~m) 

Fig. 5. Excitation and emission spectra of Li, Eut/3Zrz(PO4)3 
(x ~ 0.33, T = 300 K). 
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A large amount  of lithium leads to the formation of 
a new phosphate with composition LixEu~/3Zrz(PO4)3 
(x ~ 0.33 from chemical analysis). The X R D  pattern of  
this phase can be indexed assuming a hexagonal cell: 
a = 8.75 _ 0.005/k, c = 23.17 + 0.003/~. 

The intercalation process corresponds to the reduc- 
tion of  the majority of Eu 3+ to Eu 2+. This can be 
checked (1) by the increase in the c parameter  since the 
ionic radius of  Eu 2+ (R = 1.17 [12]) is larger than that 
of  Eu3+(R = 0.95), and (2) by the existence, under 
300 nm excitation, of  a broad band emission peaking at 
460 nm and characteristic of  Eu 2+ (Fig. 5). 

5. Conclusions 

The new phosphate Eul/3Zr2(PO4)3 exhibits interest- 
ing properties in very different fields of  solid state 
chemistry and material science. These preliminary re- 
sults need a more complete investigation from various 
viewpoints: ceramic sintering, intercalation mechanism 
and Eu 2+ luminescence optimization. 
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